

A Division of Pro Electric Ltd.

Preventive Maintenance Inspection for

Rutland Waterworks - Station 7

8/31/2015

General Information

Survey was conducted using FLIR SYSTEMS Therma CAM Model PM395.

This report was created using **Therma CAM Reporter Professional** a software from **FLIR SYSTEMS AB**.

Images and recommendations provided by Heatseeker Infrared inspection.

HEATSEEKER INFRARED INSPECTION

A Division of Pro Electric Ltd.

1817 Edgehill Ave. Kelowna, BC Phone: (250) 860-5818 Cellular: (250) 718-8251 Email: heatseeker@proelectricltd.ca Web: www.proelecdtricltd.ca

Rain Low PREPARED BY:

Bruce Wiebe (Thermographer & Electrician)

Table of Contents

Item	Equipment	Page
For Your Information		3
Repair Recommendations		4
Pump Stn. 7	Main Disconnect	5
Pump Stn. 7	Pump No. 2 Disc.	6
Pump Stn. 7	Pump No. 2 Disc.	7

FOR YOUR INFORMATION

I'm often asked for the formula that I use to determine if an item is 'defective' or 'needs attention'.

The short answer is that no such formula exists which is useful for a Thermographer. All electrical components have normal operating or recommended temperatures and typically have 'not to exceed' specifications. These however, are not the same as the temperature of the abnormal hot spot at the point of high resistance.

Normally what a Thermographer does is look for differences among the three phases. If there is a difference, there must be an explanation. Differences in load (imbalances) can cause temperature differences; these may be normal (typical in a Lighting Circuit) or abnormal (such as in a 3-Phase Motor Circuit).

High-resistance Connection Points also often result in abnormal thermal differences. Abnormal thermal differences show up as hot spots associated with a connection. We can only measure a surface temperature! The actual source of the heating is typically internal to one degree or another. When such a connection is disassembled it is common to find the connection inside has melted while the surface was only hot.

In many instances, even a small temperature difference phase to phase can signal a BIG problem. This is especially true for systems which are lightly loaded. Despite the fact that several companies sell programs to adjust load and temperature, the calculation is NOT a simple one. The only thing we really know is that as load increases, so does temperature and it does so at a rate that is more than linear!

EXAMPLE: A 13 °C rise over ambient at 10% load can (and often does) increase to 93 °C with a 50% load.

The best solution is to note <u>ALL</u> differences and determine why they exist. If loads are light, convection is strong, equipment is critical, and measurements are unreliable, <u>ANY</u> temperature difference should be investigated thoroughly.

REPAIR RECOMMENDATIONS

Degrees Celsius Rise Above Reference Temperature:

0-10 degrees Celsius (Classification 1) <u>MINOR</u> x Repair at next scheduled shutdown. x Low probability of physical damage.

11-35 degrees Celsius (Classification 2)<u>INTERMEDIATE</u> x As available. x Repair in 2-4 days. x Inspect for physical damage.

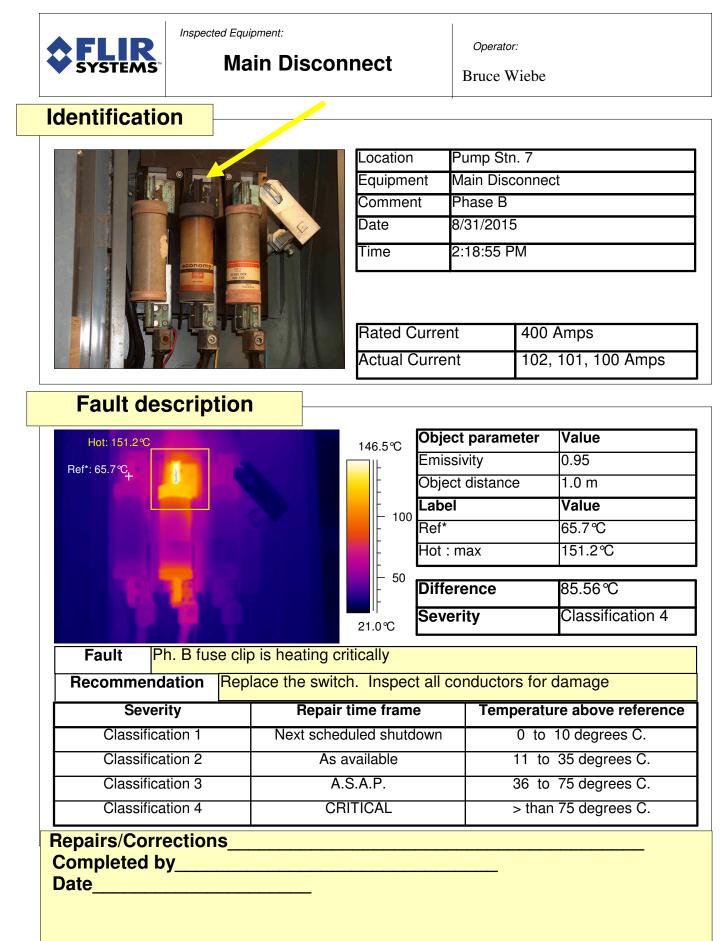
36-75 degrees Celsius (Classification 3) SERIOUSXXX

x Repair A.S.A.P. 1-2 days.

x Component replacement probable.

x Inspect surrounding components for physical damage.

x Re-Scan.


>than 75 degrees Celsius (Classification 4) <u>CRITICAL</u> x Shutdown component and replace.

x Re-Scan.

SPECIAL NOTES:

We would like to emphasize that 'tightening' alone often will not be sufficient to solve the problem concerning Connections. Components need to be disassembled, examined for damage and cleaned before assembly.

The above recommendations are meant as a guide only, based on the ASNT (American Society for Nondestructive Testing) specifications. Note that when amperage increases/decreases, the anomaly component temperature will increase/decrease accordingly.

Inspected Equipment:

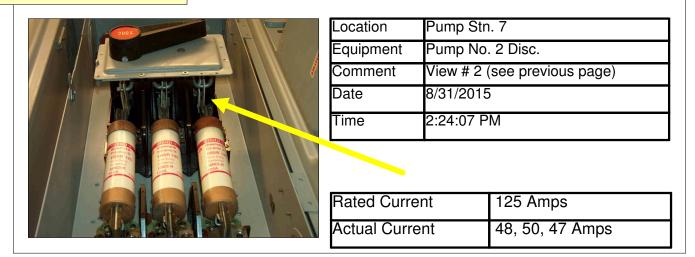
Pump No. 2 Disc.

Operator:

Bruce Wiebe

Identification

	Equ Con Date	ipment nment e	Pump Stn Pump No. View # 1 (8/31/2015 2:28:14 P	. 2 Disc (see ne 5 M	
		· · · · ·		0, 47 Amps	
Fault description	47.2	o Obje	ct paramo	eter	Value
	47.2	Emis	-		0.95
		Object distance		Э	1.0 m
	40 Labe		el		Value
		Ref*			33.2℃
Hot: 48.4 ℃			: max		48.4 <i>°</i> C
		³⁰ Diffe	rence		15.17℃
Ref*: 33.2℃,		23.3 ℃ Sev	erity		Classification 2
Fault The switch is	heating at the Jaw	& Hinge			
Recommendation Clea	n & tighten the me	chanism,	inspect fo	or dan	nage
Severity	Repair time f		•		re above reference
Classification 1		Next scheduled shutdown		0 to 10 degrees C.	
		vailable		11 to 35 degrees C.	
Classification 3 A.S					75 degrees C.
Classification 4 CRI		TICAL > than 75 degrees C.		75 degrees C.	
Repairs/Corrections Completed by Date					


Inspected Equipment:

Pump No. 2 Disc.

Operator:

Bruce Wiebe

Identification

Fault description

	49.8 <i>°</i> C	Object parameter	Value
		Emissivity	0.95
Hot: 50.3℃		Object distance	1.0 m
		Label	Value
	40	Ref*	33.2°C
		Hot : max	50.3 <i>°</i> C
		Difference	
and an 1 cm 1 cm	- 30	Difference	17.05 <i>°</i> C
Ref*: 33.2℃ <u>,</u>	26.8℃	Severity	Classification 2

Fault This shows the heating behind the plate				
Recommendation Same as previous page				
Severity		Repair time frame	Temperature above reference	
Classification		Next scheduled shutdown	0 to 10 degrees C.	
Classification	2	As available	11 to 35 degrees C.	
Classification	3	A.S.A.P.	36 to 75 degrees C.	
Classification	1	CRITICAL	> than 75 degrees C.	
Repairs/Corrections Completed by Date				

Executive Summary of Inspection for

Rutland Waterworks - Station 7

8/31/2015

This inspection was initiated because someone noticed that the surface of the main disconnect cabinet was warm to touch. It's a good thing this was noticed !

With the help of Steve Hughes, the electrical cabinets were opened and scanned looking for abnormally heated components. Such components would in due time damage equipment causing premature failure. By comparing the temperatures of similarly loaded phases and components we can determine if a component is begining to show signs of stress prior to complete failure. This allows your staff to order equipment and schedule repair without causing expensive down time.

The Infrared inspection shows that the main switch is severely heating at a Class 4 level and needs to be replaced immediately, as it's failure is imminent. Also the associated conductors need to be examined for damage, and their replacement is possible.

The other anomaly discovered is a Class 2, which involves repair and inspection for damage in the switch. Two images are shown for this switch, first to give an overview and then to show the hidden source of the heating behind the switch cover.

Recommendations are at best only recommendations. Each of the anomalies should be closely investigated by your staff.

List of Anomalies Found				
Severity	Page	Equipment	Fault	
Classification 4	5	Main Disconnect	Ph. B fuse clip is heating critically	
Classification 2	6	Pump No. 2 Disc.	The switch is heating at the Jaw & Hinge	
Classification 2	7	Pump No. 2 Disc.	This shows the heating behind the plate	

PREPARED BY:

Bruce Wiebe (Thermographer & Electrican)

Kain LI